Journal of Directed Energy
Volume 6 Contents and Indexes

Volume 6 Contents

Volume 6, Number 1, Fall 2016

Special Edition on Non-Lethal Directed Energy Weapons and Technologies
David B. Law, Guest Editor

Introduction to Conference Proceedings of the 2015/2016 DEPS Directed Energy Systems Symposium’s Non-Lethal Directed Energy Weapons and Enabling Technologies
David B. Law ... 1-10

Solid-State Active Denial Using Gallium Nitride Technology
Ken Brown and Nick Kolias... 11-24

High-Efficiency, Millimeter-Wave Combining for Solid-State Active Denial Systems
Jean-Marc Rollin and Steven E. Huettner ... .25-36

Determining Risk of Significant Injury for Active Denial Technology Systems
Shannon Foley and Wesley Burgei ... 37-43

Compact and Multifunctional Metamaterial-Enabled Antennas
D. H. Werner, M. D. Gregory, Z. H. Jiang, S. D. Campbell, J. A. Bossard, and C. P. Scarborough ... 44-67

A Dual-Frequency, Folded-Topology, Dielectric Waveguide Lens Antenna
Randy D. Curry, Barrett Lamb, David Bryan, Justin Legarsky, Kevin A. O’Connor, Kenneth F. McDonald, and Sarah A. Mounter .... 68-89

High-Power-Density Solutions for Directed Energy Weapon System Applications
Hernando Munevar and Emanuel Papandreas ... 90-104

Joint Non-Lethal Weapons Program’s Non-Lethal Directed Energy Weapons-Past, Present, and Future
David B. Law ... 105-117

Volume 6, Number 2, Spring 2017

Thermal Damage behind HEL-Irradiated, Carbon Fiber-Reinforced Polymer Skin,
Jorge D. Garcia, Peter Joyce, and Cody Brownell ... 119-136

Designing Better Sodium-Guidestar Lasers for Adaptive Optics with Experimental Results and Modeling
Shawn Hackett, Robert Johnson, and Jack Drummond ... 137-148

Modeling the Impact of Slow Varying Offsets between HEL Line of Sight and Target Aimpoint
G. Erten and B.H. Robinson. ... 149-158

Incorporating Refraction into Satellite Safety
John Dewsnap, Steven Gabriel, Heather Witts, and Udayan Bhapkar ... 159-174

On the Clustering of Rare Earth Dopants in Fiber Lasers
John Ballato and Peter Dragi ... 175-181

Measurement of Potassium Electronic-Level Relaxation Cross-Sections Induced by Methane
M.D. Rotondaro, B.V. Zhdanov, M.K. Shaffer, and R.J. Knize ... 182-186

Evidence and Implications of Differences in Atmospheric Optical Turbulence Behavior on Opposite Coastal Environments
William Bourque, Charles Nelson, and Douglas Nelson ... 187-197

Effects of Rotation and Inert Thermal Sinks on Laser Heating of Cold, Rolled-Steel Cylinders: Preliminary Experimental Results
D. Mauldin, L. O’Neill, I. De Mallie, F. Arnold, L.A. Florence, J. Hartke, D.O. Kashinski, J.E. Johnson, J. Lamb, R. Huffman, D.E. Riegner, N.F. Fell, T. Kreidler, and G. Tamm ... 198-208

Pulsed Discharge-Diode Pumped Ar* Laser
Jiande Han, Michael C. Heaven, Paul J. Moran, Greg A. Pitz, Eric M. Guild, Carl R. Sanderson, and Brett Hokr ... 209-219

Volume 6, Number 3, Spring 2019

Jittered Uniform Annular Beams
Charles J. Albers, Jr ... 221-227

Laser Communication as a Secure, High-Bandwidth Airborne Communication Link
Lester Begg and David Robie ... 228-237

Integration Readiness Assessment Tools for Streamlining Technology Development through Transition
Sean Ross ... 238-253

Evaporation and Beam Profile Measurements on an Irradiated Water Drop
Timothy E. Tracey and Cody J. Brownell ... 254-265

Operational Safety Analysis of Laser Power Beaming
Eric Conrad, William Rowley, and Tony Thampan ... 266-281

Calibration and Testing of Distributed Fiber Optic Sensors for Detection of High Energy Radiation
Mathew Kautzman and Brian Jenkins ... 282-296

Volume 6, Number 4, Summer 2021

Special Issue on Millimeter Waves

DEPS Millimeter Wave Issue Introduction
Jeffrey N. Whitmore... 297-298

Summary of Results from the Active Denial Biological Effects Research Program
Stephanie A, Miller, Michael C. Cook, Jill S. McQuade, John A. D'Andrea, Stev Chalfin, John Ziriax, James E. Parker, and Charles W. Beason... 299-325

LaserThreshold for Pain in Response to 94-GHz Millimeter Wave Energy Experienced Under Varying Ambient Temperatures and Humidities
Michael C. Cook, Stephanie A. Miller, Kristie L. Pointer, Leland R. Johnson, Charles T. Kuhnel, Philip E. Tobin, Thomas E. Dayton, and James E. Parker... 326-336

Eye-Blink and Face-Avert Responses to 94-GHz Radio Frequency Radiation Experienced Following Alcohol Consumption
Michael C. Cook, Leland R. Johnson, Stephanie A. Miller, James E. Parker, and Thomas J. McMurray... 337-352/P>

Behavioral Effects of Exposure to Active Denial System on Operators of Motor Vehicles
Kalyn Haeuser, Stephanie A. Miller, Jill S. McQuade, Jeffrey Whitmore, James E. Parker, and Christina Hinojosa... 353-377

Lack of Effects of 94-GHz Energy Exposure on Sperm Production, Morphology, and Motility in Sprague Dawley Rats
Brenda L. Cobb, Michael C. Cook, Terri L. Scholin, Larry Johnson, Duane C. Kraemer, and Thomas J. McMurray ... 378-387

Thermal Injury in Large Animals Due to 94-GHz Radio Frequency Radiation Exposures
James E. Parker, Jeffrey S. Eggers, Philip E. Tobin, and Stephanie A. Miller... 388-407

Millimeter Wave Dosimetry Using Carbon-Loaded Teflon
James E. Parker, Charles W. Beason, and Leland R. Johnson... 408-421

Volume 6, Numbers 1-4 Contents & Indexes... 422-431

Volume 6 Author Index

 

Albers, Charles, 3:221 

Arnold, F., 2:198 

Ballato, John, 2:175 

Beason, Charles, 4:299, 4:408

Begg, Lester, 3:228 

Bhapkar, Udayan, 2:159 

Bossard, J., 1:44 

Bourque, William, 2:187 

Brown, Ken, 1:11 

Brownell, Cody, 2:119, 3:254, 3:282 

Bryan, David, 1:68 

Burgei, Wesley, 1:37 

Campbell, S., 1:44 

Chalfin, Steve, 4:299 

Cobb, Brenda, 4:378 

Conrad, Eric, 3:266 

Cook, Michael, 4:299, 4:326, 4:337, 4:378 

Curry, Randy, 1:68 

D’Andrea, John, 4:299 

Dayton, Thomas, 4:326 

De Mallie, I., 2:198 

Dewsnap, John, 2:159 

Dragic, Peter, 2:175 

Drummond, Jack, 2:137 

Eggers, Jeffrey, 4:388 

Erten, G., 2:149 

Fell, N., 2:198 

Florence, L., 2:198 

Foley, Shannon, 1:37 

Gabriel, Steven, 2:159 

Garcia, Jorge, 2:119 

Gregory, M., 1:44 

Guild, Eric, 2:209 

Hackett, Shawn, 2:137 

Haeuser, Kalyn, 4:353 

Han, Jiande, 2:209 

Hartke, J., 2:198 

Heaven, Michael, 2:209 

Hinojosa, Christina, 4:353 

Hokr, Brett, 2:209 

Huettner, Steven, 1:25 

Huffman, R., 2:198 

Jenkins, Brian, 3:282 

Jiang, Z., 1:44 

Johnson, J., 2:198

Johnson, Larry, 4:378

Johnson, Leland, 4:326, 4:337, 4:408

Johnson, Robert, 2:137 

Joyce, Peter, 2:119, 3:282

Kashinski, D., 2:198

Kautzman, Mathew, 3:282

Knize, R., 2:182

Kolias, Nick, 1:11

Kraemer, Duane, 4:378

Kreidler, T., 2:198

Kuhnel, Charles, 4:326

Lamb, Barrett, 1:68

Lamb, J., 2:198

Law, David, 1:1, 1:105

Legarsky, Justin, 1:68

Mauldin, D., 2:198

McDonald, Kenneth, 1:68

McMurray, Thomas, 4:337, 4:378

McQuade, Jill, 4:299, 4:353

Miller, Stephanie, 4:299, 4:326, 4:337, 4:353, 4:388

Moran, Paul, 2:209

Mounter, Sarah, 1:68

Munevar, Hernando, 1:90

Nelson, Charles, 2:187 Nelson, Douglas, 2:187

O’Connor, Kevin, 1:68

O’Neill, L., 2:198

Papandreas, Emanuel, 1:90

Parker, James, 4:299, 4:326, 4:337, 4:353, 4:388, 4:408

Pitz, Greg, 2:209

Pointer, Kristie, 4:326

Riegner, D., 2:198

Robie, David, 3:228

Robinson, B., 2:149

Rollin, Jean-Marc, 1:25

Ross, Sean, 3:238

Rotondaro, M., 2:182

Rowley, William, 3:266

Sanderson, Carl, 2:209

Scarborough, C., 1:44

Scholin, Terri, 4:378

Shaffer, M., 2:182

Tamm, G., 2:198

Thampan, Tony, 3:266

Tobin, Philip, 4:326, 4:388

Tracey, Timothy, 3:254

Werner, D., 1:44

Whitmore, Jeffrey, 4:297, 4:353

Witts, Heather, 2:159

Zhdanov, B., 2:182

Ziriax, John, 4:299

 

 

Volume 6 Subject Index

absorption, 1:45, 1:62, 1:86, 2:136, 2:161, 2:177, 2:185, 2:188, 2:210–213, 2:216–217, 3:254–256, 3:260–264, 3:272–273, 4:298–302, 4:306, 4:312, 4:315–316, 4:321, 4:327, 4:341, 4:379, 4:385, 4:397, 4:406

active denial, 1:11–13, 1:22, 1:37

·        active denial system (ADS), 1:2, 1:10, 1:11–13, 1:25–26, 1:35, 1:105, 4:298–303, 4:307, 4:310, 4:313–317, 4:319–323, 4:327–339, 4:354–360, 4:366–372, 4:374–376, 4:391, 4:403, 4:411

·        active denial technology (ADT), 1:2, 1:8, 1:10–11, 1:14, 1:21–22, 1:25, 1:28, 1:37, 1:39–43, 1:90–92, 1:94, 1:103, 1:105, 1:114

          See also solid- state active denial technology

algorithms, 1:45–49, 2:159, 2:162, 2:164, 2:167–168, 2:172, 2:174, 3:227, 3:230

·        genetic algorithm (GA), 1:45–46, 1:62

·        particle swarm (PS), 1:45–47

·        covariance matrix adaptation evolutionary strategy (CMA-ES), 1:45–48

aluminosilicate glasses, 2:176, 2:179

aluminum gallium nitride (AlGaN), 1:11, 1:15

analysis of variance (ANOVA), 4:300, 4:304, 4:307, 4:317–318, 4: 331–332, 4:334, 4:353, 4:359–360, 4:362, 4:384–385

annular beams, 3:221, 3:227

antenna, 1:8–11, 1:19, 1:25–28, 1:30–31, 1:35, 1:44–46, 1:51–52, 1:54–62, 1:64–65, 1:68–69, 1:72–81 1:85–86, 1:88, 3:229, 3:234, 4:306, 4:328, 4:341–342, 4:357, 4:367, 4:410–411

·        dielectric loaded antenna, 1:68

·        high-gain antenna, 1:52

·        high power microwave           array antenna, 1:68

·        lens antenna, 1:68, 1:70–71, 1:75, 1:78–79, 4:341

·        antireflection layer, 1:71

·        metamaterial-enabled antennas, 1:45, 1:52

·        ultradirective antenna, 1:52

atmospheric propagation, 2:187–188, 3:255

blood alcohol level (BAL), 4:337, 4:339–350

bandwidth, 1:44–45, 1:48, 1:52–56, 1:58–60, 1:71, 1:73–74, 1:85, 2:137, 2:139, 2:144–147, 3:228,

·        narrow bandwidth, 1:45

beam, 1:10, 1:12, 1:15, 1:19, 1:22–23, 1:26–29, 1:35, 1:44, 1:52, 1:54–56, 1:58–59, 1:61–62, 1:64, 1:68, 1:81, 1:83, 2:119, 2:121–122, 2:138–141, 2:149–157, 2:159, 2:161–162, 2:173, 2:188, 2:196, 2:203, 2:206, 2:209–211, 2:213, 2:216, 3:221–223, 3:225–227, 3:229–231, 3:235–236, 3:244, 3:246, 3:249, 3:254, 3:258–264, 3:266–267, 3:269, 3:271, 3:277–280, 3:284, 3:288, 3:292–295, 4:297, 4:299, 4:301–304, 4:306, 4:308, 4:313, 4:318–321, 4:337–339, 4:341, 4:354–357, 4:359, 4:367–371, 4:374, 4:381, 4:391–392, 4:396–397, 4:408–410, 4:413

·        Gaussian beam, 2:150, 2:203, 3:221–223, 3:258, 3:262, 3:295

·        beam quality, 2:155, 2:209–211, 3;221–222, 3:226–227

bioeffects, 4:297–301, 4:315, 4:322, 4:327, 4:337–338, 4:354, 4:389, 4:409

·        eye blink, 4:304–305, 4:307–308, 4:310–311, 4:321, 4:337, 4:339– 4:340, 4:342–348,           4:350

·        face avert, 4:337, 4:339, 4:342–345, 4:347–350

·        human effects, 1:8, 1:12, 1:37–38, 1:42, 1:111, 1:115

              See also cornea

Brillouin gain, 2:176, 2:179

·        stimulated brillouin scattering (SBS), 2:176, 2:179–180

carbon fiber–reinforced polymer (CFRP), 2:119–122, 2:127–128, 2:131–136, 3:282–284, 3:286–287, 3:293–295

carbon-loaded Teflon (CLT), 1:11, 1:22–23, 4:413, 4:329, 4:342– 343, 4:353–354, 4:357–358, 4:367, 4:408–411, 4:414, 4:417–420

chemical mechanical planarization (CMP), 1:25–27

continuous wave (CW), 1:11, 1:23, 2:203, 2:209–212, 2:214–215, 2:218,  4:318, 4:391

convex lens, 2:213

co-planar waveguide (CPW), 1:11, 1:18, 1:27

cornea, 3:266–269, 3:272–275, 4:299,  4:301–303, 4:305–310, 4:320–321

·        corneal damage, 4:303,           4:307, 4:309, 4:311, 4:342, 4:349–350

·        corneal surface, 3:273, 4:308–309

counter-directed energy weapon (CDEW), 3:282–283

counter-materiel (CM), 1:2, 1:4, 1:6–7, 1:105, 1:112–113, 1:116

counter-personnel (CP), 1:2, 1:4, 1:6–8, 1:105, 1:112–113, 1:116

counter-vehicle technologies, 1:8

counter-vessel technologies, 1:8

cross-section, 1:15–16, 1:68, 2:182–186, 2:210, 2:213, 2:218, 4:389 

CST Microwave Studio simulations, 1:85

DARPA, 1:25, 1:31, 3:230

data rates, 3:228–230, 3:237

DC thermally accelerated life testing (DC TALT), 1:11, 1:16

decibels isotropic (dBi), 1:59, 1:61, 1:68, 1:70, 1:73, 1:78, 1:83, 1:85

deconfliction, 2:159–162, 2:173, 3:279

dielectric lenses, 1:68–71, 1:74, 4:328, 4:381

differential scanning calorimetry (DSC), 2:199, 2:202, 2:206

diffraction, 3:221, 3:223, 3:227, 3:261

diffraction limited, 2:155–157, 3:222, 3:226

dimethylbenz[a]anthracene (DMBA), 4:300, 4:315

directed energy weapon (DEW), 1:90, 1:105, 1:11, 1:116, 2:135, 3:283, 4:389

discharge kinetics, 2:209

distributed optical fiber sensors (DOFS), 3:282–284, 3:286–289, 3:292–296

dose–response, 1:37, 1:40–42, 4:302, 4:310, 4:345–349, 4:388, 4:397

dosimetry, 4:306–308, 4:328–329, 4:339, 4:341, 4:357, 4:368, 4:370, 4:372, 4:408–409, 4:411, 4:413–414, 4:417–418

DPAL, 2:182–184, 2:186, 2:210, 2:216, 2:218

dynamic target, 2:198–200

effective isotropic radiated power (EIRP), 1:68, 1:85

electro-magnetic cloaking, 1:45

electro-magnetics

        applications antenna

        miniaturization; band

        width improvement;

        scattering reduction,

        1:44

FEM technique, 1:50

Fiber Bragg gratings, 2:119, 3:283

·        FBG sensors, 2:131–132, 2:134–135

fiber lasers, 2:121, 2:137, 2:175, 2:179, 2:203, 3:258

forward-looking infrared (FLIR), 1:11, 1:22–23, 2:119, 2:122, 2:126, 2:133–134, 4:330, 4:342, 4:357, 4:391, 4:397, 4:414

frequency selective surfaces (FSS), 1:49

Fresnel zone, 1:22

gallium arsenide (GaAs), 1:9, 1:11, 1:13, 1:15

gallium nitride (GaN), 1:10–11, 1:13, 1:15–20, 1:23–25, 1:28, 1:30–31

gas laser, 2:209 

Gaussian, 1:48, 2:121, 2:149–155, 2:203, 2:206, 3:221–223, 3:258, 3:262, 3:269, 3:295, 4:328, 4:341, 4:367–368, 4:396

generator, 1:90–92, 1:94–95, 1:97–98, 1:101–103, 2:213, 3:241, 4:393

·        diesel engine, 1:92, 1:94

·        gas turbine generator (GTG), 1:10, 1:90, 1:92, 1:94–95, 1:97–99, 1:101–103

GEOCOM, 3:228

GEOSAT, 3:228–236

Green’s function (Gp), 1:44, 1:49–50

guidestar

·        fiber laser guidestar, 2:137

·        guidestar modeling, 2:137, 2:139, 2:146

·        SFG guidestar, 2:140–144

·        VECSEL guidestar, 2:137, 2:144

Gysel, 1:30–31, 1:33–34

Gysel splitter, 1:33

heat flux, 1:31, 2:119, 2:125

heavy expanded mobility tactical truck (HEMTT), 1:12

high energy laser (HEL), 2:119–120, 2:131, 2:149–155, 2:175–176, 2:198–199, 2:201, 2:203–206, 3:222, 3:254–255, 3:261, 3:264, 3:282–284, 3:291–295

HEL LOS, 2:149–150, 2:155, 2:157, 2:158

            See also line of sight

HEL weapon system, 2:187–189, 2:196

high mobility multiple-wheeled vehicle (HMMWV), 1:11, 1:12, 4:356

high power fiber lasers, 2:175

high power microwaves (HPM), 1:2. 1:8–10, 1:68–69, 1:75, 1:85, 1:105, 1:113–115

            See also radio frequency, HPRF

higher power density, 1:99, 1:103

Hybrid Predictive Avoidance and Safety System (HPASS), 2:160

hyperspectral imagery (HSI), 3:230, 3:237

inductively coupled plasma (ICP), 1:12, 1:16

infrared thermography, 4:312–313, 4:319, 4:331

Integration Readiness Level (IRL), 3:238, 3:242–244, 3:247–249, 3:251–253

ionization, 2:182–183, 2:185–186, 2:218

IR camera, 2:119, 2:122, 2:126–128, 2:131, 2:133–135, 3:285, 4:304, 4:306, 4:318, 4:328, 4:330–331, 4:357, 4:372, 4:381, 4:391, 4:393, 4:396, 4:414, 4:420

jitter, 2:149, 2:150, 2:155–157, 2:201, 3:221–223, 3:225–227

Johnson figure of merit (JFoM), 1:12, 1:15

Joint Intermediate Force Capabilities Office (JIFCO), 4:354–355, 4:356

joint light tactical vehicle (JLTV), 1:12, 1:20–21

Joint Non-Lethal Weapons Directorate (JNLWD), 1:1–2, 1:4–5, 1:8–10, 1:35, 1:37, 1:42, 1:86, 1:103, 1:105–111, 1:113–115, 4:354

keep-out cone (KOC), 2:159–162

Laser Clearinghouse, 2:159–160

laser communication

·        (lasercomm), 3:228– 229, 3:231–235, 3:237

·        anti-jam, 3:228–229, 3:232

·        low probability of detection (LPD), 3:229, 3:232

·        low probability of interception (LPI), 3:229, 3:232, 3:237

              See also GEO-COM, GEOSTAT

Laser Environmental Effects Definition and Reference (LEEDR), 3:255

laser irradiation, 2:128, 2:132

limited first responder capability (LFRC), 1:38

line of sight (LOS), 2:149–150, 3:229, 3:232, 3:279

manufacturing readiness (MRL), 3:238, 3:241–244, 3:251–252

MATLAB, 2:125, 2:150, 2:154, 2:168, 2:195, 2:207, 3:222–223, 3:225, 3:258, 3:273, 3:289

mean time between failure (MTBF), 1:90, 1:103

mean time between overhaul (MTBO), 1:90, 1:103

mean time to failure (MTTF), 1:12, 1:16

mechanothermal nociceptors, 1:39

medium tactical vehicle replacement (MTVR), 1:12

metahorn, 1:52–54

metal-insulator-metal (MIM), 1:12, 1:15

metamaterials, 1:44–46, 1:49, 1:52, 1:54–56, 1:58–62, 1:64–65

metastable states, 2:209

metastables, 2:209–211, 2:214, 2:216, 2:218–219

microfabrication, 1:25–26, 1:35

mini-pig, 4:313, 4:388–391

millimeter wave (MMW), 1:2, 1:10–13, 1:19, 1:22–26, 1:35, 1:39, 1:105, 4:297–319, 4:332–335, 4:337–339, 4:344, 4:349–350, 4:353–355, 4:367, 4:369–370, 4:379–381, 4:384–386, 4:388–391, 4:393, 4:397, 4:403, 4:406, 4:408–411, 4:413, 4:415, 4:417, 4:420

·        millimeter wave exposures, 4:298, 4:301–304, 4:307, 4:311–312, 4:316, 4:318, 4:337–338, 4:350, 4:355, 4:371, 4:379–381, 4:384, 4:389–391, 4:396, 4:408–411, 4:413, 4:415, 4:417

·        millimeter-wave monolithic integrated circuits (MMIC), 1:12–13, 1:15–20, 1:24–25,1:27–33

mobile electric power (MEP), 1:90, 1:92, 1:94, 1:97, 1:101

multi-chip module (MCM), 1:12, 1:19

NASA, 1:25, 1:34, 3:231, 3:234

Navy Laser Weapon System (LaWS), 2:120

nominal ocular hazard distance (NOHD), 3:267, 3:269

nonionizing radiation, 1:39

non-lethal directed energy weapons (NL DEW), 1:1, 1:2, 1:6–10, 1:105–107, 1:110–116

non-lethal weapon (NLW), 1:2, 1:37–42, 1:105–107, 1:109, 1:111, 1:113, 1:116

optical coatings, 3:272

optical power, 3:271–272, 3:278

optical turbulence, 2:187–188, 2:197

optimization, 1:10, 1:44–49, 1:52, 1:54, 1:73–74, 1:78, 2:137, 3:240

pain threshold, 4:302, 4:306, 4:326–327, 4:330–331, 4:334–335, 4:338

phased array, 1:68, 1:80

photolithography, 1:27

plasma-enhanced chemical vapor deposition (PECVD), 1:12, 1:15

PolyStrata, 1:10, 1:25–33, 1:35

potassium, 2:182–184, 2:186

power

·        power added efficiency (PAE), 1:12, 1:17–18, 1:26, 1:30–31

·        power amplifiers, 1:15–16, 1:25, 1:28–30

·        power combiners, 1:19, 1:25

·        power handling, 1:62–64, 1:70, 1:81, 1:85

·        power in the bucket (PIB), 2:149, 2:150, 2:152–157, 3:221,           3:227

·        power module antenna array, 1:28, 1:30–31

              See also PolyStrata

predictive avoidance, 2:159–160, 2:173

pulse repetition frequency (PRF), 4:326, 4:329, 4:342

radiated power density, 1:12, 1:22

radio frequency (RF), 1:10, 1:16, 1:18, 1:27, 1:29, 1:31–35, 1:47, 1:68–69, 1:90–91, 1:103, 3:228–234, 3:237, 4:297–298, 4:300, 4:306–307, 4:315, 4:354–355, 4:388–389, 4:391–392, 4:396–397, 4:399, 4:401, 4:406, 4:409

·        high-power radio-frequency (HPRF), 1:69, 1:91, 1:103

·        radio-frequency energy, 1:25

·        radio-frequency radition (RFR), 4:337–338, 4:340–343, 4:390

·        RF directed energy, 1:11

·        RF/HPM, 1:2, 1:8–10, 1:105, 1:113–115

·        RF/millimeter-wave, 1:26

·        RF operating life testing (RFoL), 1:12, 1:16

rare earth–doped glass, 2:175, 2:179

Raytheon Rancho Innovation (RRI), 1:22, 1:26, 1:35

refraction, 2:159, 2:160–174, 2:188, 3:256, 3:264, 3:267, 3:270–271, 3:284

RE-O-Al, 2:177, 2:179

reproduction, 4:317, 4:379

risk of significant injury (RSI), 1:1, 1:9, 1:37–43

Schottky, 1:15

scintillometer, 2:188–191, 2:195–196

sensors, 2:119–120, 2:131–132, 2:134–135, 3:230, 3:245, 3:279, 3:282–285, 3:288, 3:295, 4:409

Silent Guardian, 1:12–13

silica, 2:175–176, 2:179–180, 2:213, 3:284

Skid Plate, 1:13–14, 1:21–23

sodium guidestar

sodium guidestar lasers, 2:137, 2:139

SodiumStar, 2:137, 2:140, 2:142–144

solid-state active denial technology (SS-ADT), 1:2, 1:10–12, 1:14–22, 1:25–26, 1:33, 1:35, 1:105

            See also active denial

solid-state power amplifier (SSPA), 1:26, 1:35

spatial power combining, 1:19

sperm motility, 4:317, 4:378–379, 4:381, 4:383, 4:385

Starfire Optical Range, 2:137–138

Stryker, 1:19–20

substrate integrated waveguide (SIW), 1:58–59

sulfur hexafluoride (SF6), 1:69, 1:75

supercapacitors, 1:93

SWAP/C2, 1:1–2, 1:9–10, 1:105, 1:107

system readiness level (SRL), 3:238, 3:241–242, 3:244, 3.250–253

tailored radiation patterns, 1:44

technology readiness level (TRL), 1:12, 1:22, 1:111, 3:235, 3:238–242, 3:247, 3:249, 3:251–252

thermal conductivity, 1:15, 2:119, 2:131, 2:134–135, 2:202, 2:207, 3:254

thermocouples, 2:200, 3:282, 3:284, 3:287–289, 3:292

three-frequency cloud and precipitation radar (3CPR), 1:25, 1:34

transformation electromagnetics (TE), 1:51–52, 1:55

transformation optics, 1:44, 1:51

tunable, 1:44, 1:59–60, 2:210, 2:212–213, 2:216

tunable diode laser absorption spectroscopy (TDLAS), 2:210, 2:213, 2:216–218

unmanned aerial vehicles (UAVs), 2:119–120, 2:159, 3:228–229

vacuum electronic device (VED), 1:11, 1:12, 1:14, 1:22

vaporization, 3:254–257, 3:261–262, 3:264

vertical external cavity surface emitting laser (VECSEL), 2:137, 2:139, 2:144–146

voltage standing wave ratio (VSWR), 1:54, 1:69, 1:70, 1:73, 1:85

volts direct current (VDC), 1:91

W band, 1:25

waveguide transitions, 1:35

wideband, 1:44