Elemental Theory of a Relativistic Magnetron Operation:
Dispersion Diagram
Andrey D. Andreev, Kyle J. Hendricks, Shawn Soh,
Mikhail Fuks, and Edl Schamiloglu ... 141
Progress in First Principles Modeling of HPM Effects
Larry D. Bacon, Jeffery T. Williams, Michael J. Walker, and Alan Mar... 4250
Nonlinear Transmission Line Performance under Various Magnetic Bias Environments
J.W. Braxton Bragg, James C. Dickens, and Andreas A. Neuber ... .5157
Far-Field Laser Intensity Drop-Outs Caused by Turbulent Boundary Layers
Stanisla>v Gordeyev, Jacob Cress, and Eric Jumper ... 5875
Simulation of Aero-Optics over Conformal and Flat Window Turrets
Michael D. White, Philip E. Morgan, and
Miguel R. Visbal ... 7692
Lasers Based on Highly Doped Lu2O3 Ceramics,
Woohong
Kim, Colin Baker,
Guillermo Villalobos, Jesse
Frantz, Brandon Shaw,
Jas Sanghera, Bryan
Sadowski, and Ishwar
Aggarwal.... 93104
Incorporation of Probabilistic Effects in Reflected Laser Hazard Methodology,
Edward Early, George
Megaloudis, Justin Zohner,
Paul Kennedy, and Robert
Thomas ... 105128
Scalable Pump Source for Diode-Pumped Alkali Laser
F. William Hersman, Jan H.
Distelbrink, and David
W. Watt ... 129136
Numerical Modeling of High-Energy Laser Effects in Polymer and Composite Materials
Andrew C. Tresansky,
Peter Joyce, Joshua
Radice, and Joe
Watkins. ... 137158
Optical Directed-Energy Beam Directors: Enabling Capabilities for the War
Fighter
Paul Konkola ... 159174
Sensitivity Analysis and Characterization of Vertical-Cavity, Surface-Emitting Lasers for Directed Energy Applications
E.A.
Fennig, P.O. Leisher, G.
Ragaunathan, and K.D.
Choquette ... 175180
On the Average Probability of Hitting a Satellite during a Laser Counterartillery Engagement
Roger Chapman Burk
... 181206
Performance of the Mark II Quarter-Wave SRF Photoinjector
John
W. Lewellen, C. Wayne
Bennett, John R. Harris,
Richard L. Swent, Chase
H. Boulware, Terry L.
Grimm, Mark Curtin,
Daniel Sox, and Todd
I. Smith ... 207218
The Application of SCOS for HPM Field Measurement
Bradley
M. Whitaker, Jonathan R.
Noren, Daniel T. Perry,
Stephen M. Schultz,
Richard H. Selfridge,
Richard Forber, Wen C.
Wang, and Jeffrey S.
Schleher...219236
MATILDA: A Military Laser-Range Safety Tool Based on Probabilistic Risk
Assessment Techniques
Brian K.
Flemming, Paul K.
Kennedy, Daniel F.
Huantes, and Matthew D.
Flower ... 237-259
Removing Linewidth Limitations for Spectrally Combined Lasers
R.
Andrew Motes ... 260-267
Analysis of Three-Dimensional Heat Flow in the Laser Heating of Materials
Chuck LaMar ... 268284
Calculating Beam Quality Using Power in the Bucket Curves
Brian Strickland ... 285307
The Effects of Jitter and Stationary Spot Size on Energy Transfer during a
Laser Engagement
D. Blaine, J.
Smith, K. Ludeman, J.
Hartke, and L. Florence ... 309318
Fiber Optic Sensors for Nonintrusive Diagnostic Measurements of Rail Gun Electric and Magnetic Fields
Anthony Garzarella
and Dong Ho Wu ... 319326
High-Sensitivity, All-Dielectric Electric and Magnetic Field Sensors for RF and HPM Applications Up to 20 GHz
Dong Ho
Wu and Anthony Garzarella ... 327334
Non-Intrusive High Voltage Measurement Inside a Coaxial Cable Using a Slab-Coupled Optical Sensor (SCOS)
Frederick Seng,
Nikola Stan, Richard
Selfridge, and Stephen Schultz ... 335345
Stochastic Parallel Gradient Descent Algorithm with Adaptive Gain for Atmospheric Turbulence Compensation
Daniel Whitley,
Jessie Hazen, Greg
Finney, Christopher Persons,
and John Rakoczy ... 346354
Impact of Partial Spatial and Temporal Coherence on Active Track and Active Imaging
Richard Holmes, V.S.
Rao Gudimetla, Michael
Werth, Jacob Lucas, and
Jim F. Riker ... .355380
Probabilistic Risk Assessment Process for High-Power Laser Operations in Outdoor Environments
Brian K. Flemming,
Paul K. Kennedy, Daniel
F. Huantes, and Matthew
D. Flower ... 381407
Number 1 Number 2, Number 3, Number 4
Aggarwal, Ishwar, 1-93
Andreev, Andrey D., 1-1
Bacon, Larry D., 1-42
Baker, Colin, 1-93
Bennett, C. Wayne, 3-207
Blaine, D., 4-309
Boulware, Chase H., 3-207
Bragg, J.-W. Braxton, 1-51
Burk, Roger Chapman, 2-181
Choquette, K.D., 2-175
Cress, Jacob, 1-58
Curtin, Mark, 3-207
Dickens, James C., 1-51
Distelbrink, Jan H., 2-129
Early, Edward, 2-105
Fennig, E.A., 2-175
Finney, Greg, 4-346
Flemming, Brian K., 3-219, 4-381
Florence, L., 4-309
Flower, Matthew D., 3-219, 4-381
Forber, Richard, 3-250
Frantz, Jesse, 1-93
Fuks, Mikhail, 1-1
Garzarella, Anthony, 4-319, 4-327
Gordeyev, Stanislav, 1-58
Grimm, Terry L., 3-207
Gudimetla, V.S. Rao, 4-346
Harris, John R., 3-207
Hartke, J., 4-309
Hazen, Jessie, 4-346
Hendricks, Kyle J., 1-1
Hersman, F. William, 2-129
Holmes, Richard, 4-346
Huantes, Daniel F., 3-219, 4-381
Joyce, Peter, 2-137
Jumper, Eric, 1-58
Kennedy, Paul K., 2-105, 3-219, 4-381
Kim, Woohong, 1-93
Konkola, Paul, 2-159
LaMar, Chuck, 3-268
Leisher, P.O., 2-175
Lewellen, John W., 3-207
Lucas, Jacob, 4-346
Ludeman, K., 4-309
Mar, Alan, 1-42
Megaloudis, George, 2-105
Morgan, Philip E., 1-76
Motes, R. Andrew, 3-242
Neuber, Andreas A., 1-51
Noren, Jonathan R., 3-250
Perry, Daniel T., 3-250
Persons, Christopher, 4-346
Radice, Joshua, 2-137
Ragaunathan, G., 2-175
Rakoczy, John, 4-346
Riker, Jim F., 4-355
Sadowski, Bryan, 1-93
Sanghera, Jas, 1-93
Schamiloglu, Edl, 1-1
Schleher, Jeffrey S., 3-250
Schultz, Stephen M., 3-250, 4-335
Selfridge, Richard H., 3-250, 4-335
Seng, Frederick, 4-335
Shaw, Brandon, 1-93
Smith, J., 4-309
Smith, Todd I., 3-207
Soh, Shawn, 1-1
Sox, Daniel, 3-207
Stan, Nikola, 4-335
Strickland, Brian, 3-285
Swent, Richard L., 3-207
Thomas, Robert, 2-105
Tresansky, Andrew C., 2-137
Villalobos, Guillermo, 1-93
Visbal, Miguel R., 1-76
Walker, Michael J., 1-42
Wang, Wen C., 3-250
Watkins, Joe, 2-137
Watt, David W., 2-129
Werth, Michael, 4-346
Whitaker, Bradley M., 3-250
White, Michael D., 1-76
Whitley, Daniel, 4-346
Williams, Jeffery T., 1-42
Wu, Dong Ho, 4-319, 4327
Zohner, Justin, 2-105
Number 1 Number 2, Number 3, Number 4
Below, number preceding colon is issue number. Italicized page numbers indicate figures or tables.
A6 resonant system, 1:1, 1:5, 1:723
active imaging, 4:355
active Thevenin equivalent network approach (ATHENA), 1:42, 1:4445, 1:44, 1:47, 1:49
active tracking, 4:355, 4:363, 4:378
adaptive gain, 4:346, 4:348, 4:349351, 4:350, 4:351354
adaptive optics, 4:346347
adaptive step size. See adaptive gain/and step size
aero-optical effects
airborne laser-based communication systems, 1:58, 1:59
alignment laser, 2:162, 2:163, 2:164
ATHENA. See active Thevenin equivalent network approach
atmospheric scintillation, 4:355, 4:356359
beam control system (BCS), 3:285
beam director, 2:159160, 2:161, 2:164
beam fraction, 3:290
beam propagation factor (BPF). See M2
beam quality (BQ)
boundary layers, turbulent, 1:5875
Brillouin dispersion diagram, 1:2
Number 1 Number 2, Number 3, Number 4
carbon fiberreinforced polymer (CFRP) laser effects on, 2:137, 2:138, 2:150158
Cartesian coordinate system, 3:269, 3:270
catastrophic chain of events model, 3:241, 3:242, 3:246
ceramic lasers, 1:92104
ceramic nanopowders. See nanopowders
composite materials, laser effects on, 2:137158
COMSOL Multiphysicsฎ package, 2:137, 2:138139
continuously operating (CW) RF-based injector. See injectors counterrocket, artillery, and mortar (C
RAM) mission defined, 2:182 use of lasers in, 2:183
C-RAM. See counterrocket, artillery, and mortar (CRAM) mission
cryoplant operation, Mark II, 3:216, 3:216217
damped gyromagnetic precession, 1:51, 1:52
D-dot probes, 4:320, 4:328329, 4:332
D-dot sensors, 3:227, 227, 3:228235, 3:230234
D-fiber, 4:337, 4:337
dielectric sensor, 3:219, 3:220, 3:235. See also slab-coupled optical sensors (SCOS)
differential scanning calorimetry (DSC), 2:141142, 2:142, 2:144, 2:145, 2:146, 2:150, 2:151, 2:157
diode pumped alkali laser (DPAL), 2:129136
directed energy
dispersion diagrams, 1:1-41
distributed Bragg reflectors, 2:176
electric field sensor, 3:219, 3:220235
electric fields, in rail guns, 4:321326
electron beam measurements, 3:207, 3:212214, 3:217
electron beam source. See superconducting beam sources electron gun. See Mark I QW SRF gun
electro-optic (EO) crystals, 4:319, 4:321, 4:321, 4:327, 4:329, 4:329, 4:330 331, 4:333334
electro-optic (EO) sensors, 4:319325, 4:327, 4:329334, 4:329, 4:331334
electro-optic lithium niobate, 4:337, 4:338, 4:341
engagement modeling. See satellite/CRAM engagement
external cavity diode laser systems, 2:129, 2:132
Eyekon Systems
Number 1 Number 2, Number 3, Number 4
far-field angular radius, 3:292
far-field laser intensity drop-outs from turbulent boundary layers, 1:5875
fast steering mirror (FSM), 2:160, 2:161, 2:162, 2:163, 2:164, 2:164, 2:170
fault/failure condition modeling, 3:244, 3:244
fault-free laser firing zones (FFLFZ), 3:247249, 3:255
fault-free laser pointing errors, 3:245
fault-free overshoot and undershoot, 3:249
ferrimagnetic coaxial pulse sharpener, 1:56
ferrimagnetic materials, in NLTLs, 1:51, 1:52
fiber lasers, 3:261263
fiber optic cables, 3:228
fiber-optic-reflectance spectroscopy, 2:142, 2:143, 2:143, 2:145, 2:157
fiber optic sensors. See electro-optic (EO) sensors; magneto-optic (MO) sensors
fine-grain ceramics, 1:97103. See also nanopowders
first-principles modeling, 1:42, 1:43
flow solver, compact, high-order, 1:78
fluid equations, 1:8284
Fourier series, 3:269, 3:275
Gaussian beams, 3:273274, 3:275276, 3:281, 3:285, 3:289, 3:295297
geographic information system (GIS) technology, 3:239, 3:250, 3:251, 3:259
Number 1 Number 2, Number 3, Number 4
hazard region, 2:109, 2:126, 2:127
HELCoMES performance code, 3:285, 3:287, 3:289, 3:290, 3:292, 3:292, 3:293, 3:294, 3:296, 3:299, 3:301, 3:303305, 3:306
high-average current accelerator, 3:208
high-energy lasers (HEL), 4:381382, 4:388, 4:393
high-order compact differences, 1:82, 1:83
high-power laser operations in outdoor environment, 4:381407
high-power microwave (HPM) systems, 1:42, 3:219, 4:327, 4:331, 4:332
high voltage, 4:335337, 4:343344
HPM. See high-power microwaves (HPM)
hybrid turbulence methods, 1:76, 1:78, 1:79, 1:80, 1:90
incoherent beam combining, 3:261, 3:262
induced RF field, 1:1, 1:2, 1:5, 1:3940
illumination of objects, coherent vs. incoherent, 4:396, 4:358363
inertial measurement unit (IMU), 2:161, 2:162164, 2:164, 2:168169, 2:173
injectors
injury to unprotected observers, 3:240, 3:241, 3:245
instantaneous near-field wavefront statistics, 1:58
Number 1 Number 2, Number 3, Number 4
jitter, IMU, 2:161, 2:163
jitter, laser beam, 2:160, 2:162, 4:309317
jitter, submicroradian, 2:168
jitter, telescope, 2:163, 2:168
Landau-Lifshitz-Gilbert equation, 1:51, 1:52
laser beam irradiance distributions, 3:270
laser beam jitter. See jitter, laser beam
laser beam propagation, 1:8182
laser characterization. See beam quality
laser directed energy weapon (LDEW) systems, 4:381
laser effects on composite and polymer materials, 2:137158
laser hazard analysis, 3:237, 4:381382, 4:384, 4:388, 4:403
laser hazard area trace (LHAT), 3:257, 3:257
laser heating of materials, 3:268284
lasermaterial interaction, 3:269
laser partial coherence, 4:355, 4:357, 4:367, 4:369, 4:374, 4:376
laser range safety, 3:237
laser safety
laser system assessment, 4:388390, 4:389, 4:394
Laser Weapon System (LaWS) U.S. Navy, 2:182
lithium niobate. See electro-optic lithium niobate
Littrow configuration, 2:129, 2:130, 2:132, 2:133
lutetia (Lu2O3) ceramics, 1:93
lutetium ion, 1:93
M2 (or beam propagation factor), 3:288, 3:289, 3:293, 3:294, 3:295
Number 1 Number 2, Number 3, Number 4
magnetic moment dynamics, 1:51, 1:52, 1:53
magneto-optic (MO) crystals, 4:322, 4:327, 4:329, 4:329, 4:330, 4:331, 4:333, 4:334
magneto-optic (MO) sensors, 4:319325, 4:327, 4:329331, 4:329, 4:333334, 4:329, 4:331332, 4:334
magnetrons
Mark I Quarter Wave (QW) SRF gun, 3:207, 3:209210, 3:210, 3:211, 3:212, 3:214, 3:216, 3:217
Mark II Quarter Wave (QW) SRF photoinjector, 3:207, 3:209217, 3:211
MATILDA (Military Advanced Technology Integrated Laser Hazard Assessment), 3:237, 3:238239, 3:249257, 3:258259
maximum permissible exposure (MPE)
Miller heat soak, 3:05
minimum ophthalmoscopically visible lesions (MOVL), 3:245247, 3:249, 3:256, 3:256, 3:258, 4:399, 4:400 401
mobile tactical, high-energy laser ([M]THEL), 2:182
mode pattern, RF, 1:35, 1:7, 1:910, 1:12, 1:16, 1:1718, 1:17, 1:21, 1:21, 1:26, 1:3235, 1:3445, 1:39
modeling, first-principles, 1:43
Monte Carlo methods, 2:105, 2:108, 2:117
sampling and variance reduction (in satellite/C-RAM engagement model), 2:193195
multipacting effects, 3:214
multiport equivalent circuit, 1:46
Number 1 Number 2, Number 3, Number 4
nanopowders, for fine-grain ceramics, 97 103
nominal ocular hazard distance (NOHD), 3:240241, 3:246, 3:257, 3:257
non-Gaussian beams, 3:285
nonlinear transmission lines (NLTLs), 1:51
numerical modeling of laser effects
observer position lines, 2:109114, 2:109, 2:111, 2:116117, 2:123127, 2:124127
open-circuit voltages, 1:4548
optical beam steering. See optical directed-energy beam directors
optical bench, 2:164, 2:168, 2:169, 2:170, 2:170
optical component-to-metrology, frame-resonant structure, 2:167, 2:167
optical directed-energy beam directors, 2:159174
optical fiber, sensing region, 4:337338, 4:337338
optical path difference (OPD), 1:59, 1:60, 1:81, 1:90
oxide-confined devices, 2:175, 2:178
partial spatial coherence, 4:357
partial temporal coherence, 4:357, 4:358 359
photoinjector. See Mark II QW SRF photoinjector
pointing error probability distribution function (PDF), 3:243244
polymer materials, laser effects on, 2:137158
ports, circuit board, 1:44, 1:44, 1:45, 1:45
power in the bucket (PIB) curves, 3:285 307
power scaling, 1:97
PRA-based laser hazard assessment modeling, 3:243, 3:258, 4:402403, 4:404 405
predictive avoidance, 2:183
probabilistic hazard analysis, 2:105128
probabilistic risk assessment (PRA), 3:237, 3:238, 4:381382, 4:384, 4:402404
probes, 4:320
pseudo-star, 2:161, 2:162, 2:162, 2:163
pulse sharpening, 1:51, 1:52, 1:56
quarter wave (QW) cavity geometry, 3:209210
Number 1 Number 2, Number 3, Number 4
radio-frequency directed energy (RFDE), 1:42, 1:43.
radio frequency (RF) measurements, 4:320
radio-frequency (RF) power applied to any cavity, 3:214
rail guns, 4:319326
rare-earthdoped ceramics, 1:92104
reflectance
reflected beam
reflected lasers
reflected rays
relay mirror systems, 4:393
resonant cavity, 1:1, 1:5, 1:10
resonant frequencies, 1:1, 1:2, 1:4, 1:10
risk assessment process, 4:381382, 4:384385, 4:385, 4:387, 4:387, 4:394, 4:396, 4:401404, 4:401
risk-based range clearance technique, 3:244
risk evaluation stage, 4:388, 4:394402
risk management and control process, 3:241, 3:241
Number 1 Number 2, Number 3, Number 4
safety threshold, 2:105. See also laser safety; laser range safety
satellite/C-RAM engagement
satellites, laser impingement of, 2:181205
sawtooth jitter, 4:316317, 4:317
scalar metric, 4:346, 4:348
sensing, 4:335336, 4:342
sensitivity for VSELs. See vertical-cavity, surface-emitting lasers (VCSEL)
sensor(s)
sensor axis, 4:330, 4:331
sensor head, 4:329, 4:329, 4:331
Shack-Hartman sensor, 1:61, 1:64
sesquioxide-based ceramics, 1:93104
slab-coupled optical sensors (SCOS), 4:335344, 4:337344
slab waveguide, 4:337, 4:338, 4:338
solid cylindrical cathode, 1:1, 1:5, 1:7, 1:12, 1:1315, 1:1719, 1:2122, 1:23, 1:25, 1:26, 1:2931, 1:3140, 1:3335
space harmonics, 1:23
spatial coherence, 4:355, 4:358359, 4:363, 4:364367, 4:364, 4:365, 4:376377, 4:378
spectral beam combining (SBC), 3:260 267, 3:261, 3:264
spectral narrowing, from external cavity, 2:129, 2:130, 2:133, 2:135
SPGD algorithm, 4:346347, 4:348351, 4:352354
Spice circuit solvers, 1:49
Spice ngspice, 1:50
spot size in analysis of lasermaterial interaction, 3:268, 3:275, 3:276, 3:278, 3:281 283, 3:282, 3:283
stationary spot size, 4:309317, 4:314, 4:316
stochastic parallel gradient descent (SPGD), 4:346347
Strehl ratio (SR), 1:58, 1:60, 1:65, 1:66, 1:66
superconducting beam sources, 3:208209
superconducting radio-frequency (SRF), 3:209
superfish code/calculations, 1:7, 1:12, 1:13, 1:17, 1:19, 1:20, 1:21, 1:23, 1:2426, 1:29, 1:32, 1:35, 1:38
tactical lasers, 2:159, 2:169. See also Eyekon Systems; mobile tactical, high-energy laser
Thermal Imaging Airborne Laser Designator (TIALD) system (UK), 3:237, 3:239, 3:247, 3:250
Thevenin-equivalent circuit, 1:47, 1:49. See also active Thevenin equivalent network approach (ATHENA)
TIALD system. See Thermal Imaging Airborne Laser Designator (TIALD) system (UK)
transparent cylindrical cathode: 1:1, 1:5, 1:7, 1:2326, 1:2728, 1:2931, 1:39
turret configurations (flat-window and conformal) 1:76, 1:77, 1:85
turrets aero-optical effects from, 1:5961
vertical-cavity, surface-emitting lasers (VCSELs), 2:175180
voltage measurements, 4:338, 4:342
voltage probe, 4:336338, 4:340342, 4:344, 4:342
wavefront sensor, 4:351352
wave-optic simulation, 4:357, 4:376
wave-optic speckle model, 4:357
Xemed XeBox-E10 commercial xenon polarizer, 2:132
Xemed xenon polarizer, 2:132 Xyce, 1:50
Yb-doping concentrations, 1:93, 1:9495, 1:95
ytterbium (Yb) ion, 1:93
yttrium aluminum garnet (YAG), 1:93